湖南内循环厌氧反应器系统

时间:2023年10月24日 来源:

CSTR PLUS是在传统CSTR的基础上进行优化创新,提高处理效率的高效厌氧反应器,专为含有高浓度可生物降解悬浮物的有机废水的处理而设计,可将水中的溶解性有机污染物(BOD、COD)和可生物降解的固体悬浮物(如油脂、淀粉等SS)转化为绿色能源——沼气,实现沼气产量的至大和废水处理成本的至低。 CSTR PLUS可以承受非常高的COD和SS浓度,分别可达100g/L和80g/L。CSTR PLUS可以在较短的停留时间中降解污染物,产生沼气,停留时间只为6~15天(传统厌氧消化为20~30天)。待处理的废水被引入UASB反应器的底部,向上流过由絮状或颗粒状厌氧污泥的污泥床。湖南内循环厌氧反应器系统

厌氧反应器

防止污泥厌氧污泥流失的方法:(1)控制反应器的容积负荷,容积负荷决定了反应器的进水量与沼气产量,控制容积负荷也就是控制造成污泥流失的产气负荷和水力负荷,在容积负荷相同的情况下,反应器越高,表面产气负荷越大,污泥越容易流失;(2)引入污泥流失指数,将每天的污泥流失量与生成量进行比较,始终保持污泥的生成量大于污泥的流失量;(3)如果颗粒污泥中混有大量的絮状污泥,由于絮状污泥的裹挟作用会造成微细颗粒污泥的流失,因此,在运行颗粒污泥反应器时一定要把反应器中的絮状污泥逐步分阶段淘洗干净广东高负荷厌氧反应器厂家AMBR工艺由三个隔室组成。

湖南内循环厌氧反应器系统,厌氧反应器

厌氧颗粒污泥钙化的危害:厌氧颗粒污泥的钙化极易发生在处理制浆造纸废水等厌氧反应器中。颗粒污泥的钙化对颗粒污泥所造成的影响是:①导致颗粒污泥中有机与无机成分比例的失衡:颗粒污泥内部有机物的比例会随直径增大而减小。颗粒污泥越大、有机物的含量越少,产甲烷的活性越低。②会阻断颗粒污泥中微生物与有机物和其他物营养物质的传质通道:传质通道的堵塞,微生物会因得不到营养物质而死亡,颗粒污泥会逐渐丧失产甲烷的活性。③导致颗粒污泥的密度增大,沉降性能增强:钙化了的颗粒污泥需要更大的水力负荷才能使其处于流化态;它们容易沉降在反应器底部而形成堆积层,比较终成为颗粒污泥的流化死区,严重影响厌氧反应器的正常运行。

厌氧反应器处理的四个阶段:即厌氧消化过程分为水解阶段、酸化阶段、产乙酸产氢阶段、产甲烷阶段四个部分。水解阶段:微生物菌体分泌胞外水解酶,将碳氢化合物、脂肪和蛋白质转化为单糖、氨基酸和长链脂肪酸(LCFA);酸化阶段:水解阶段的产物在酸化微生物菌群的作用下降解为戊酸、丁酸、丙酸、乙酸、二氧化碳和氢;产乙酸产氢阶段,功能微生物菌群将戊酸等转化为甲烷细菌可以直接利用的基质-乙酸、二氧化碳和氢;在的产甲烷阶段,产甲烷细菌将乙酸、氢与二氧化碳转化为甲烷和二氧化碳,并伴随着微生物的生长与衰亡,在此同时,系统内的硫酸盐或硝酸盐在硫酸盐还原菌或反硝化菌的作用下,以乙酸或氢作为电子供体,被还原成硫化氢或氮气。IC 厌氧反应器的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具有优势。

湖南内循环厌氧反应器系统,厌氧反应器

无机盐对厌氧系统的毒性:①钠盐;Na+对厌氧消化的抑制浓度在5000-10000mg/L的范围内,高浓度的Na+可能会使细菌失去产生胞外多聚物的能力,不能产生凝集作用,细菌呈分散状态,影响到颗粒污泥的形成。盐离子浓度过高还会使细胞失去水分。但Na+的毒性是可逆的。②钙盐;钙离子会对某些产甲烷菌的生长和颗粒污泥的形成至关重要,但过多的钙盐会降低产甲烷菌和颗粒污泥的活性,并造成营养成分的损失,除此之外钙盐太多还会形成钙盐沉淀与结垢,造成厌氧系统的缓冲能力下降。③铝盐;废水中的铝盐会粘附在细胞膜上,影响微生物的生长和颗粒污泥产甲烷的活性。④镁盐;适当的镁离子能够增强厌氧颗粒污泥的沉降性能,颗粒污泥更不易从反应器中流失。但镁离子对高温厌氧污泥产甲烷活性的促进作用并不明显。IC反应器容积负荷率高出普通UASB反应器3倍左右。浙江UASB厌氧反应器公司排名

AnMBR反应主要运行参数主要是指生物反应器的主要参数和膜系统主要参数。湖南内循环厌氧反应器系统

水解产酸菌与产甲烷菌的关系:

水解产酸菌与产甲烷菌的代谢相互协同又相互制约。厌氧消化是许多厌氧细菌混合在一起进行的发酵过程。各类微生物的代谢不是孤立进行的,而是在一个复杂的共生系统中同时进行的。每种微生物的代谢都处于相互影响、相互协同又相互制约的过程中。在厌氧消化过程中,各类微生物之间的关系主要反映在它们对有机物的协同利用上。它们相互合作,把各种碳链较长的、结构复杂的有机物逐步分解成碳链较短的、结构简单的有机物,直至由产甲烷菌将它们转变成只含1个碳原子的化合物甲烷和二氧化碳。这种协同关系具体表现在水解产酸菌为产甲烷菌提供生长和产甲烷所需要的基质;产甲烷菌为水解产酸菌消除有机酸和氢的伤害、并提供促进生长的因子;水解发酵细菌、产乙酸菌和产甲烷菌相互制约。 湖南内循环厌氧反应器系统

信息来源于互联网 本站不为信息真实性负责