上海水质氨氮超标如何处理

时间:2020年02月14日 来源:

硝化反应,其本质上使氧化反应,因此溶解氧的浓度在过程中起到非常重要的作用。

生物硝化反应通过化学方程式来表述就是:

NH4++2O2→NO3+2H++H2O

在这个方程式中,我们可以看到完成整个氨氧化的过程,需要的氧和氮的比值为:

2O2÷N=(2×16×2)÷14=64÷14=4.57gO2/gN

也就是说每降解一克NH4-N(注意不是氨的量,是氨中氮的量)需要4.57g的氧气O2。

在这个两份的需氧量中,NH3-N在转化成亚硝酸盐的过程中约需1.5份氧量,亚硝酸盐向硝酸盐的转化过程中约需0.5份的氧量。

污泥龄的影响

活性污泥法工艺中,氨氮的处理主体是硝化菌,而硝化菌的世代周期较长,因此就需要比较长的污泥龄做支撑,一般硝化的污泥龄时间需大于10d以上,冬季运行可以维持更长的污泥龄。


氨氮该怎么处理,绵津环保告诉您。上海水质氨氮超标如何处理

硝化菌是自养型细菌,所谓的自养菌就是在其工作的过程中完全不需要碳的参与,自养型细菌的抗冲击能力都比较脆弱,因此污水中的毒性物质需控制在其可接受范围内,才能正常工作。下表为一些毒性物质对硝化过程的阈值范围:

有效控制活性污泥硝化作用的毒物

化合物 浓度 mg/l

** b 2000

烯丙醇 19.5

基氯丙烯 180

异硫氰酸烯丙醇 1.9

二硫苯丙噻唑 38

二硫碳 35

哥罗仿 18

甲酚 12

二烯丙基酯 100

二腈二胺 250

二胍 50

2,4-二硝基酚 460

二硫代草酰胺 1.1

乙醇 2400

碳酸胍 16.5

8-羟基喹啉 72.5

巯基苯丙噻唑 3

盐酸甲胺 1550

异硫氰酸甲酯 0.8

硫脲***甲酯 6.5

酚 b 5.6

硫氰酸钾 300

粪臭素 7

二硫代氨基甲酸钠 13

甲基二硫代氨基甲酸钠 0.9

四甲秋兰姆化二硫四甲酯 30

硫代乙酸铵 0.53

氨基硫脲 0.18

硫脲 0.076

三甲基氨 118


北京废水中氨氮超标解决方法绵津环保为您定制氨氮超标解决方案。

空气吹脱法是将废水与气体接触,将氨氮从液相转移到气相的方法。该方法适宜用于高浓度氨氮废水的处理。吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至碱性时,离子态铵转化为分子态氨,然后通入空气将氨吹脱出。吹脱法除氨氮,去除率可达60%~95%,工艺流程简单,处理效果稳定,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯碱生产作母液,也可根据市场需求,用水吸收生产氨水或用吸收生产铵副产品,未收尾气返回吹脱塔中。但水温低时吹脱效率低,不适合在寒冷的冬季使用。

用该法处理氨氮时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。该方法比较适合处理高浓度氨氮废水,但吹脱效率影响因子多,不容易控制,特别是温度影响比较大,在北方寒冷季节效率会**降低,现在许多吹脱装置考虑到经济性,没有回收氨,直接排放到大气中,造成大气污染。


离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,成本低,对NH4+有很强的选择性。将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中氨氮。

沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的比较好区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一步处理。

绵津环保科技(上海)有限公司的生物促进硝化菌(MicroBoost®- N)在污水处理厂在受到毒性物质冲击或者低温条件下,土著的硝化菌数量减少,活性降低,氨氮去除率下降。 我们愿携手更多有识之士共同推进绿色产业的蓬勃发展,以技术优势及专业服务与伙伴们合作共赢。

传统活性污泥法工艺中,硝化菌的总量约占总体细菌量的3%~5%,这样浓度的硝化菌数量,基本上可以使硝化菌成为活性污泥中的优势菌种,而在实际运行过程中,由于其他指标的影响,往往会破坏掉这个平衡,使硝化菌总量减少,造成出水氨氮出现波动甚至超标的情况。

绵津环保科技(上海)有限公司的生物促进硝化菌种(Micro Boost®-N)非常适合硝化菌种流失后的补充,其氨氧化速率高于400mgNH3-N/H/L.

pH值得影响

硝化状态的维持pH值比较好在弱碱性下进行,因为硝化过程中会源源不断的产生硝酸,这些硝酸的产生会影响整个水体的pH值,当pH值降到6.8以后,硝化速率会降低,当pH值小于6.0的时候,硝化就基本停止了。因此为了使硝化得以持续,实际运行过程应根据pH值变化加入适量的氢氧化钠或纯碱等以中和消化过程中产生的硝酸量。

NH4++2HCO3+2O2→NO3+2CO2+3H2O

上面这个反应中中,我们可以看到硝化过程需要碳酸盐碱度的参与,在这个方程式中,我们可以看到完成整个氨氧化的过程,需要的碱度(以CaCO3计算)和氮的比值为:

CaCO3÷N=100÷14=7.14gCaCO3/gN


绵津环保立足中国,放眼全球,尽绵津之力让赖以生存的环境更加生态、环保,为环境保护提供技术支持。北京废水中氨氮超标解决方法

绵津环保集生产销售、项目EPC总包、生态环境咨询服务、承包运营为一体的综合型专业环保公司。上海水质氨氮超标如何处理


硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下:

亚硝化: 2NH4++3O2→2NO2-+2H2O+4H+

硝化 :    2NO2-+O2→2NO3-

硝化菌的适宜pH值为8.0~8.4,比较好温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS•d);泥龄在10天以上。

绵津环保科技(上海)有限公司的生物促进硝化菌(MicroBoost®- N)在污水处理厂在受到毒性物质冲击或者低温条件下,土著的硝化菌数量减少,活性降低,繁殖受到阻碍,氨氮去除率下降。MicroBoost®- N提供的硝化细菌协同土著的硝化菌增强系统的硝化能力,提高系统在毒性、***物或低温条件下运行性能。MicroBoost®- N可以在污水处理系统启动期,快速建立硝化系统;可以在污水处理系统硝化系统受到冲击时使用,快速恢复硝化功能,可以在污水处理系统日常运行时使用,增加硝化系统的稳定性和持续性。



上海水质氨氮超标如何处理

绵津环保科技(上海)有限公司致力于环保,以科技创新实现***管理的追求。绵津环保拥有一支经验丰富、技术创新的专业研发团队,以高度的专注和执着为客户提供[ "生物促进硝化菌", "生物促进总氮去除菌", "高效碳源", "生物促进COD菌" ]。依托效率源扎实的技术积累、完善的产品体系、深厚的行业基础,目前拥有员工数11~50人,年营业额达到1000-2000万元。绵津环保始终关注自身,在风云变化的时代,我们对自身的建设毫不懈怠,高度的专注与执着使我们在行业的从容而自信。

信息来源于互联网 本站不为信息真实性负责