吉林图像声呐系统

时间:2024年01月15日 来源:

海洋也是国家的安全屏障,水下目标辐射噪声的测量,早期使用声压水听器阵列,若想获得可观的空间增益,则需要很庞大的水听器阵列,工程实现难度大,代价高,合成孔径技术对小孔径基阵沿直线运动过程中记录的接收信号进行孔径合成处理,从而达到虚拟大孔径基阵的方位分辨力效果,以用时间增益换取了空间增益。矢量水听器具有的指向性不随频率改变,将矢量水听器应用于拖曳线列阵中,可以用更小的代价改善拖曳线列阵的噪声抑制能力,消除单次定向中的左右舷模糊,切实改善目标定位精度。上海蕴缔物流有限公司为您提供声呐 ,有需求可以来电咨询!吉林图像声呐系统

吉林图像声呐系统,声呐

声呐是在合成孔径雷达技术的基础上发展起来的。早期的声呐技术多是由合成孔径雷达技术直接借用来的,使用窄带系统,研究工作虽在持续进行,但较少有投人实用的报导。近年来,由于水声学科和实时信号处理技术的进展,以及海洋开发、民用和 的需求,声呐的研究再度受到加倍的关注和重视。 此时,声呐技术多是使用宽带系统,已走出实验室,海试,上海迈波科技有限公司已有能力批量生产使用。在未来的海洋对抗中,水雷在 特定海域、对抗舰艇等方面有重要作用。因而水雷的探测、识别十分重要。该技术是具有很好应用前景的海洋高新技术。上海迈波科技有限公司位于上海市浦东新区张江科学园区。公司自主研发了一整套基于海洋声纳装备的水下综合水声解决方案,在水下探测、成像、导航、定位、通信等技术领域拥有深厚积累,掌握多项技术。浙江国内声呐探测上海蕴缔物流有限公司为您提供声呐 ,欢迎您的来电哦!

吉林图像声呐系统,声呐

合成孔径成像的原理是基于在多个位置收集的数据的相干组合,从而提高了沿轨迹的分辨率。这一原理在雷达界是众所周知的,而且也有许多星载和机载合成孔径雷达系统。历史上,自20世纪70年代以来,合成孔径也在声呐领域中应用。在1971年的一份详细的技术备忘录中,Bucknam等人(1971年)清楚地描述了声呐的原理和主要技术挑战。声呐技术于世界上的少数群体使用,其原因是声呐所需的载体稳定性、导航精度和系统成本,这些都是制约这项技术发展的重大挑战。

随着对声呐技术研究的不断深入,水声领域的科研工作者开始更加注重如何更好地将合成孔径技术应用于水声环境。宽带处理是应对复杂水声环境的一项重要手段,国外的学者率先将宽带处理应用到了声呐技术中,De Heering,Gough,RoltZakharia 等人讨论了宽带处理技术应用于声呐的可行性,并提出了多种宽带合成孔径处理方法,验证了宽带合成孔径技术的相对于普通合成孔径技术可以提高测绘速率等诸多优点。Billon,Celluza 等人则分别讨论了声呐系统设计参数的选取问题与包括风浪、多途效应、混响等影响声呐性能的因素。上海蕴缔物流有限公司是一家专业提供声呐 的公司,有想法的可以来电咨询!

吉林图像声呐系统,声呐

声呐技术作为全新的成像技术,是在海洋中进行水下地形地貌观测、定位的重要工具,在民用领域具有应用,对于提高水下目标地形地貌的分辨能力具有明显作用。海洋声学仪器中涉及各种形式的声纳系统,其作用距离是仪器的主要参数之一。而声纳方程是声纳作用距离方程,它集中反应了与声纳作用距离有关的因素以及它们之间的相互关系,揭示了声纳参数或环境特性变化时作用距离的变化规律,声纳方程是预测声纳性能的基础,是设计声纳必须首先完成的工作步骤,也是声纳的战术使用的重要方面。上海蕴缔物流有限公司为您提供声呐 ,欢迎新老客户来电!海南潜艇声呐原理

上海蕴缔物流有限公司力于提供声呐 ,欢迎新老客户来电!吉林图像声呐系统

声呐成像的基本原理是借鉴于合成孔径雷达的距离-多普勒成像原理,用通俗的语言可表述为:用大带宽信号获得距离维的高分辨率,用多普勒频率获得横向距离的高分辨率。实际上,合成孔径成像获取方位向高分辨率的原理是利用小尺寸的声基阵沿空间(方位向)作匀速直线运动以合成大的虚拟孔径,在运动的过程中以恒定的脉冲重复间隔发射并接收信号,根据空间位置和相对关系将不同位置的回波信号进行相干叠加,进而获得方位向高分辨。声呐在低频工作也能获得高图像分辨率,增加了测绘距离。同时,低频段的声波信号还具备一定的穿透能力,在探掩埋物方面也具有一定的优势。传统侧扫声呐为了提高图像分辨率,一般都工作在高频段,这造成了测绘距离严重下降。吉林图像声呐系统

信息来源于互联网 本站不为信息真实性负责