海洋生物外泌体

时间:2023年12月30日 来源:

外泌体是由细胞细胞质内的晚期内泡小体以膜融合的方式通过胞吐方式主动分泌到细胞外环境的一种直径30-100nm的微型囊泡,其形态规则,呈圆形或椭圆形杯状结构,不同类型细胞分泌的外泌体具有很多共性,包括膜上富含脂筏及丰富的跨膜蛋白,如四次跨膜蛋白家族成员CD63、CD81等,表面为类似于细胞膜的脂质双分子层,具有一定的疏水性。外泌体能够携带微小RNA(microRNAs,miRNAs)、RNA、蛋白质等生物活性分子,并在细胞外环境稳定存在,而且通过传递供体细胞信息,调节靶细胞的代谢通路。外泌体可由多种类型细胞分泌,妊娠期母体血清中存在表达胎盘碱性磷酸酶(placentalalkalinephosphatase,)的胎盘来源外泌体,并且在妊娠中发挥重要的作用。外泌体分析会引起何种生理作用,这是进一步研究的发展方向。海洋生物外泌体

海洋生物外泌体,外泌体提取试剂盒

外泌体富含蛋白质、脂质和核酸分子,这些分子具有来源细胞的特异性,所以通过分析中流细胞所释放的外泌体分子特征就可部分反映其来源细胞表型及其生物学作用。现已发现多种中流外泌体来源的蛋白类分子标志物。例如,乳腺ai、结肠ai和胰腺ai中均可检测到磷脂酰肌醇蛋白聚糖1(glypican1,GPC1)的表达,且与乳腺ai和结肠ai相比,GPC1对胰腺ai的早期诊断尤具价值。前列腺ai患者血浆外泌体中凋亡抑制蛋白的表达增高则提示与中流进展相关。随着蛋白组学技术的发展,研究发现中流患者血液外泌体来源的蛋白标志物其诊断特异性和敏感性分别可达到95%和90%。胶原外泌体外泌体作为脑内种瘤和神经退行性疾病的新型标记物。

海洋生物外泌体,外泌体提取试剂盒

Buller等利用miR-146b的质粒转染间充质干细胞,使其分泌的外泌体负载miR-146b,并将外泌体注射至移植到小鼠体内的GBM处。结果表明,这种利用外泌体运输miRNA进行zhiliao的方法可以有效抑制中流的生长。对于GBM类脑部中流,体内zhiliao不同于体外细胞实验,更需考虑脑部组织微环境对药物的影响,外泌体可运输miRNA并不破坏其在脑部中流组织处的原本功效。然而,至今还没有利用外泌体载药经静脉注射zhiliaoGBM的报道,这主要是由于跨越血脑屏障(BBB)仍然是外泌体进行脑部中流zhiliao需要解决的难题。尽管如此,Wood等报道的在进行阿兹茨海默病zhiliao时利用对脑部神经元特异性肽RVG靶向的外泌体穿过BBB的研究显示了经靶向修饰的外泌体具备穿过BBB的潜力,因此外泌体载药zhiliao具有广阔的前景。

瘤转移是病症致死的首要原因。长久以来,对瘤转移机理的研究一直聚焦于瘤与机体之间的相互作用。然而在近年来,由于外泌体被发现可以作为包括瘤在内细胞之间信息传递的一种新方式,瘤转移研究领域再度变得火热起来。我所(瘤转移的预警和预防研究所)以谢晓东博士为首的外泌体研究小组一直致力于研究瘤转移与外泌体之间的联系,已取得一系列成果。外泌体是指包含了复杂RNA和蛋白质的小膜泡(30-150nm),现今,其特指直径在40-100nm的盘状囊泡。多种细胞在正常及病理状态下均可分泌外泌体。其主要来源于细胞内内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后释放到胞外基质中。外泌体介导的细胞间交流可以改变瘤的生长、细胞迁移、抗病毒等生理过程。

海洋生物外泌体,外泌体提取试剂盒

由于特殊的结构和循环方式,外泌体作为药物运输的载体具有独特的优势。例如外泌体的尺寸分布能够增强渗透滞留效应,从而有选择性地深入中流组织;其外层磷脂双分子层可以保护内容物不受各种生物酶的影响,维持各种生物分子的活性;外泌体普遍存在于各种体液和组织中,其体积小,结构、组成与细胞膜类似,导致外泌体可以在避开免疫系统监督的同时深入组织内部,有较好的生物相容性;当采用内源外泌体时,能明显降低其他药物载体可能引起的有害免疫反应;除此之外,某些细胞来源或经特殊修饰过的外泌体具有良好的特异性,可以与特定的qi官或组织结合。免疫印迹法(WB)和Elisa检测法作为被普遍应用的外泌体检测的一般方法。安徽海洋生物外泌体

在过去几年中,有几个实验室报道了各种细胞类型的外泌体分泌,并讨论了其潜在的生物学功能。海洋生物外泌体

建立记录各论文实验条件的数据库也可作为规避混乱的方法之一。一方面,随着EV研究倍受世界瞩目,各国启动了大型研究项目。美国启动NIH战略性大型项目(ExtracellularRNACommunication),国际厉害性学会——Gordon和KeystoneSymposia也从2016开始成立会议小组。受到欧洲药物研究开发公司“创新药物倡议组织(IMI)”的支持推进的CANCER-ID项目,也包含EV研究在内。2017年日本选定了EV研究为文部科学省研究开发战略的目标之一,期待会加速今后的研究发展。无论如何,今后EV研究的根本就是必须有强有力的研究方法和技术,而PS亲和法有望成为其中之一。海洋生物外泌体

信息来源于互联网 本站不为信息真实性负责