高温黑体炉性价比

时间:2021年07月08日 来源:

1995年7月参加工作,目前在标准仪器维检部任区域技术主管,同时担任CNAS体系技术负责人。主要负责本部的技术质量、新技术的开发应用及推广、检定业务的拓展、计量标准器的建标复查、管理体系的基础运行及组织能力验证、测量审核、期间核查、相关培训等工作。

个人荣誉:

2017年计量中心*****员,

2017年计量中心教育培训工作先进个人,

2017年计量中心***科技人员,

2017年计量中心党员先锋**计划活动***个人,

2017年计量中心模范**员,

2017年包钢集团*****员,

2018年计量中心*****员,

2018年计量中心教育培训工作先进个人,

2018年计量中心***科技人员,

2018年科技攻关活动中《验证黑体炉有效发射率的研究与应用》被评为计量中心科技成果三等奖。 对初筛检不符合的额温计增加了低温黑体炉复核方法。高温黑体炉性价比

高温黑体炉性价比,黑体炉

​毛发温湿度表、毛发温湿度计、数字温湿度表、数字温湿度计、温湿表、干湿表、通风干湿表、电容式数字露点仪、温湿度控制器、温湿度变送器、温湿度记录仪、湿度传感器。

可现场检测的温度项目:

制冷恒温槽、标准水槽、标准油槽、热管炉、水浴箱、恒温水槽、恒温恒湿箱、恒温恒湿实验室、湿度检定箱、老化试验室、冷库、高低温冷热冲击试验箱、干燥箱、电热恒温培养箱、盐雾试验箱、低温试验箱、生化培养箱、高压蒸汽灭菌炉、水泥养护箱、水泥养护室、沸煮箱、高温电阻炉、灼热丝试验仪、垂直燃烧试验仪、热变形维卡仪、阻燃性能测试仪、表面抗湿性测试仪、透湿量测试仪、水份分析仪(温度部分)、冰箱焓差试验室、空调焓差试验室、黑体炉。
低温黑体炉用途具体的处理方法是:一是收集红外传感器对黑体炉标定数据。

高温黑体炉性价比,黑体炉

​温度范围:室温+10℃~400℃

-采用单片机作数据分析控制、模拟和数字多重滤波、模块式参数设置等新技术,精度高、功能多、抗干扰能力强;

-使用双排数字显示测量值和设定值;

-PID参数、回差、上下限报警值、手动输出时的百分比及因传感器等产生的误差修正量参数,均可以在面板上设置并实时显示。采用移相或过零触发可控硅,可人工控制或自动控制输出功率,使初始加热功率不至于过大,调节输出功率的大小,可以再不同的温度下得到控温效果。因为避免了大电流的冲击,可以延长黑体炉的使用寿命;

-采用自动升温控温方式,安全可靠,升温速度快,温度稳定性好,使用操作方便;

-黑体炉系列外型设计新颖,采用炉体和控温仪一体化结构,并备有RS232数字输出选配接口,--用户可根据提供的软件与电脑连接,实时观察记录温控数据和波形;

黑体开始发展的是高温黑体,早在20世纪50年代,由于光学高温计的应用,当时的苏联和英国已经研制出了黑体炉,最高工作温度可以达到2500℃。20世纪60年代,日本生产出卧式黑体炉,最高工作温度为2200℃;同年代,我国也研制出卧式黑体炉,工作温度为900~3200℃。

在20世纪60年代,中温黑体就有人开始研究,因为当时的技术条件限制,对黑体技术(如黑体腔、等温黑体腔、黑体发射率等)认识不足,甚至将热电偶检定炉的中间放置一个靶子就看作是黑体。

自从美国在越南******使用红外技术,成功地侦察到密林中的胡志明小道后(注:当时胡志明小道是运输线),拉开了红外技术在***上应用的序幕。随后,各国都开展了红外侦察、红外伪装、红外制导、红外诱饵、空中防卫等技术的研究工作,这就促进了对黑体技术的研究,尤其是对中低温黑体的研究。因此国外在20世纪80年代就已经有低温黑体,我国对低温黑体的研究,是从20世纪90开始。 有黑体炉,可以自行校验,需要说明的是,您的使用习惯、使用环境或执行标准都可能会要求更短的校准周期。

高温黑体炉性价比,黑体炉

​——黑体炉的分类?

主要包括腔式黑体和面源黑体。

——黑体的应用

黑体的主要功能是产生一定温度下的标准辐射。因此在温度计量中主要用于检定各种辐射温度计,如光学高温计、红外温度计、红外热像仪等。随着科学技术的发展,黑体的用途已经不局限于在温度计量方面的应用。在光学方面,已经普遍采用黑体作为标准辐射源和标准背景光源。在测量领域里,黑体已经用于测量材料的光谱发射、吸收和反射特性。在高能物理的研究中,黑体已经用作为产生中子源。

不同的用途对黑体的要求是不一样的。在温度计量领域,主要是利用黑体辐射和温度的对应关系,因此要求黑体的发射率越高越好。因此在选择黑体时通常是选择发射率较高的腔式黑体,同时也要注意黑体腔口直径,温度均匀性和辐射温度不确定度。
黑体炉等设施、设备对传感器进行标定,经过校准与标定后的红外测温仪可以测得目标温度的准确表面温度。上海高温黑体炉批发

黑体在工业上主要应用于测温领域,**主要的产品是黑体炉 。高温黑体炉性价比

    高温场视觉测温模型的建立是基于CCD传感器对铸坯表面温度场进行在线测量的前提。在分析辐射测温及CCD探测器基本工作原理的基础上,基于几何光学理论建立了窄带光谱辐射测温模型,为CCD辐射测温提供了理论依据。并结合连铸坯表面温度场分布特点,从温度测量范围、测量准确性以及发射率消除等因素上确定了灰度CCD进行连铸坯表面温度场测量方案。基于面阵CCD辐射测温模型,分析了测温灵敏度、温度测量范围与窄带滤光片中心波长、像方孔径角之间的关系。分析结果表明,灵敏度与像方孔径角成正相关,随窄带光谱中心波长先增大后减小;而温度测量范围与像方孔径角成负相关,随窄带光谱中心波长先减小后增大。同时考虑到波长对水雾的吸收特性以及本文选择的探测器响应波段等因素,**终选择的窄带滤光片中心波长为μm,带宽为10nm。基于几何成像的基本原理,建立了辐射测温变参数模型,在黑体炉上进行了标定试验研究,分析了曝光时间、光圈、焦距以及标定距离等参数对CCD灰度测量的影响。 高温黑体炉性价比

信息来源于互联网 本站不为信息真实性负责