芬兰脑片膜片钳实验操作

时间:2021年07月13日 来源:

对药物作用机制的研究,在通道电流记录中,可分别于不同时间、不同部位(膜内或膜外)施加各种浓度的药物,研究它们对通道功能的可能影响,了解那些选择性作用于通道的药物影响人和动物生理功能的分子机理。这是目前膜片钳技术应用普遍的领域,既有对西药药物机制的探讨,也普遍用在重要药理的研究上。如开丽等报道细胞贴附式膜片钳单通道记录法观测到人参二醇组皂苷可控制正常和“缺血”诱导的大鼠大脑皮层神经元L-型钙通道的开放,从而减少钙内流,对缺血细胞可能有保护作用。陈龙等报道采用细胞贴附式单通道记录法发现乌头碱对培养的Wistar大鼠心室肌细胞L-型钙通道有阻滞作用。膜电位Vm由高输入阻抗的电压跟随器所测量。芬兰脑片膜片钳实验操作

芬兰脑片膜片钳实验操作,膜片钳

离子通道细胞是动物和人体的基本组成单元,细胞与细胞内的通信是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科—电生理学(electrophysiology)。膜片钳技术已成为研究离子通道的"金标准"。电压门控性离子通道∶膜上通道蛋白的带点集团在膜电位改变时,在电场的作用下,重新分布导致通道的关闭,同时有电荷移动,称为门控电流。配体门控离子通道∶神经递质(如乙酰胆碱)、***等与通道蛋白上的特定位点结合,引起蛋白构象的改变,导致通道的打开。机械门控离子通道∶机械牵拉其他。美国双电极膜片钳蛋白质分子水平玻璃微电极的应用使的电生理研究进行了重命性的变化。

芬兰脑片膜片钳实验操作,膜片钳

1976年德国马普生物物理化学研究所Neher和Sakmann在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh启动的单通道离子电流,从而产生了膜片钳技术。1980年Sigworth等在记录电极内施加5-50cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),明显降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。1983年10月,《Single-ChannelRecording》一书问世,奠定了膜片钳技术的里程碑。Sakmann和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。

离子通道结构研究∶目前,绝大多数离子通道的一级结构得到了阐明但根本的还是要搞清楚各种离子通道的三维结构,在这方面,美国的二位科学家彼得·阿格雷和罗德里克'麦金农做出了一些开创性的工作,他们到用X光绕射方法得到了K离子通道的三维结构,二位因此获得2003年诺贝系化学奖。有关离子通道结构不是本 PPT的重点,可参考杨宝峰的<离子通道药理学>和Hill的<lonic Channels Of Excitable Membranes 》。对离子通道功能的研究,主要采用记录离子通道电流来间接反映离子通道功能,目前有如下两种技术:电压钳技术(Voltage Clamp),膜片钳(patch clamp)技术。早期的研究多使用双电极电压钳技术作细胞内电活动的记录。

芬兰脑片膜片钳实验操作,膜片钳

80年代初发展起来的膜片钳技术(patchclamptechnique)为了解生物膜离子单通道的门控动力学特征及通透性、选择性膜信息提供了直接的手段。该技术的兴起与应用,使人们不仅对生物体的电现象和其他生命现象更进一步的了解,而且对于疾病和药物作用的认识也不断的更新,同时还形成了许多病因学与药理学方面的新观点。膜片钳技术是一种以记录通过离子通道的离子电流来反映细胞膜单一的或多个的离子通道分子活动的技术。它和基因克隆技术(genecloning)并架齐驱,给生命科学研究带来了巨大的前进动力。膜片钳技术的建立,对生物学科学特别是神经科学是一资有重大意义的变革。芬兰双分子层膜片钳参数

离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。芬兰脑片膜片钳实验操作

光遗传学调控技术是近几年正在迅速发展的一项整合了光学、基因操作技术、电生理等多学科交叉的生物技术。Nature Methods杂志将此技术评为"Method of the year 2010"[19];美国麻省理工学院科技评述(MIT Technology Review,2010)在其总结性文章"The year in biomedicine"中指出:光遗传学调控技术现已经迅速成为生命科学,特别是神经和心脏研究领域中热门的研究方向之一。目前这一技术正在被全球几百家从事心脏学、神经科学和神经工程研究的实验室使用,帮助科学家们深入理解大脑的功能,进而为深刻认识神经、精神疾病、心血管疾病的发病机理并研发针对疾病干预和的新技术。芬兰脑片膜片钳实验操作

因斯蔻浦(上海)生物科技有限公司是一家生物科技,医药科技领域内的技术开发、技术咨询、技术服务、技术转让,实验室设备、仪器仪表、医疗器械、计算机、软件及辅助设备销售,计算机数据处理,货物及技术进出口业务。 成像平台: 1. Inscopix自由活动超微显微成像系统 2. DiveScope多通道内窥镜系统 3. 双光子显微镜 动物行为学平台: 1. PiezoSleep无创睡眠检测系统 2. 自身给药、条件恐惧、斯金纳、睡眠剥夺、跑步机、各类经典迷宫等 神经电生理: 1.NeuroNexus神经电极 2.多通道电生理信号采集系统 3.膜片钳系统 4.AO功能神经外科临床电生理平台 显微细胞: 1. UnipicK单细胞挑选及显微切割系统 科研/临床级3D打印 1. 德国envisionTEC 3D Bioplotter生物打印机 2. 韩国Invivo医疗级生物打印机等。的公司,致力于发展为创新务实、诚实可信的企业。滔博生物作为生物科技,医药科技领域内的技术开发、技术咨询、技术服务、技术转让,实验室设备、仪器仪表、医疗器械、计算机、软件及辅助设备销售,计算机数据处理,货物及技术进出口业务。 成像平台: 1. Inscopix自由活动超微显微成像系统 2. DiveScope多通道内窥镜系统 3. 双光子显微镜 动物行为学平台: 1. PiezoSleep无创睡眠检测系统 2. 自身给药、条件恐惧、斯金纳、睡眠剥夺、跑步机、各类经典迷宫等 神经电生理: 1.NeuroNexus神经电极 2.多通道电生理信号采集系统 3.膜片钳系统 4.AO功能神经外科临床电生理平台 显微细胞: 1. UnipicK单细胞挑选及显微切割系统 科研/临床级3D打印 1. 德国envisionTEC 3D Bioplotter生物打印机 2. 韩国Invivo医疗级生物打印机等。的企业之一,为客户提供良好的nVista,nVoke,3D bioplotte,invivo。滔博生物致力于把技术上的创新展现成对用户产品上的贴心,为用户带来良好体验。滔博生物始终关注自身,在风云变化的时代,对自身的建设毫不懈怠,高度的专注与执着使滔博生物在行业的从容而自信。

信息来源于互联网 本站不为信息真实性负责