日本脑片膜片钳研究

时间:2023年01月12日 来源:

过去认为,膜片钳只能在培养细胞或酶解的细胞上进行,这样得到的细胞膜表面比较光滑,才能够形成高阻封接,但缺点是组织的正常三维结构被破坏,并且对神经中枢内突触特有的传递机能的研究无法展开。于是,一些学者建立了组织切片膜片钳技术(Slicepatch),就能在哺乳动物脑片制备上做全细胞记录。1992年,在脑片膜片钳技术上,美国Ferster实验室报道在在体猫的视皮层用膜片钳全细胞记录研究了视刺激诱发的兴奋性和***性突触后电位相互影响及节律性膜电位的变化规律。1993年,德国的Dodt和Sakmann合作,利用红外电视显微镜监视,使得膜片钳记录不但能够在神经元胞体及其树突上进行,而且可同时在这两个不同的部位作膜片钳记录。膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来。日本脑片膜片钳研究

日本脑片膜片钳研究,膜片钳

全细胞记录构型(whole-cellrecording) 高阻封接形成后,继续以负压抽吸使电极管内细胞膜破裂,电极胞内液直接相通,而与浴槽液绝缘,这种形式称为“全细胞”记录。它既可记录膜电位又可记录膜电流。其中膜电位可在电流钳情况下记录,或将玻管连到标准高阻微电极放大器上记录。在电压钳条件下记录到的大细胞全细胞电流可达nA级,全细胞钳的串联电阻(玻管和细胞内部之间的电阻)应当补偿。任何流经膜的电流均流经这一电阻,所引起的电压降将使玻管电压不同于细胞内的真正电位。电流愈大,愈需对串联电阻进行补偿。全细胞钳应注意细胞必需合理的小到其电流能被放大器测到的范围(25~50nA)。减少串联电阻的方法是玻管尖要比单通道记录大。芬兰双分子层膜片钳厂家Eberwine等于1991年首先将膜片钳技术与RT-PCR技术结合起来运用。

日本脑片膜片钳研究,膜片钳

膜片钳放大器的工作模式;(1)电压钳模式∶在钳制细胞膜电位的基础上改变膜电位,记录离子通道电流的变化,记录的是诸如通道电流;EPSC;IPSC等电流信号。是膜片钳的基本工作模式.(2)屯流钳素向细胞内注入刺激电流,记录膜电位对刺激电流的反应。记录的是诸如动作电位,EPSP;IPSP等电压信号。膜片钳技术实现膜电位固定的关键是在玻璃微电极前列边缘与细胞膜之间形成高阻(10GΩ)密封,使电极前列开口处相接的细胞膜片与周围环境在电学上隔离,并通过外加命令电压钳制膜电位。

内面向外膜片(inside-outpatch)高阻封接形成后,在将微管电极轻轻提起,使其与细胞分离,电极端形成密封小泡,在空气中短暂暴露几秒钟后,小泡破裂再回到溶液中就得到“内面向外”膜片。此时膜片两侧的膜电位由固定电位和电压脉冲控制。浴槽电位是地电位,膜电位等于玻管电位的负值。如放大器的电流监视器输出是非反向的,则输出将与膜电流(Im)的负值相等。外面向外膜片(out-sidepatch)高阻封接形成后,继续以负压抽吸,膜片破裂再将玻管慢慢地从细胞表面垂直地提起,断端游离部分自行融合成脂质双层,此时高阻封接仍然存在。而膜外侧面接触浴槽液。这种膜片形式应测膜片电阻,并消除漏电流和电容电流。整个过程要当心是否形成囊泡。如果浴槽保持地电位水平,膜电位即与玻管电位相等。如放大器是非反向的,放大器的输出将与Im值相等。屯流钳素向细胞内注入刺激电流,记录膜电位对刺激电流的反应。

日本脑片膜片钳研究,膜片钳

膜片钳技术实现了小片膜的孤立和高阻封接的形成,由于高阻封接使背景噪声水平降低,相对地增宽了记录频带范围,提高了分辨率。另外,它还具有良好的机械稳定性和化学绝缘性。而小片膜的孤立使对单个离子通道进行研究成为可能。单通道电流1.典型的单通道电流呈一种振幅相同而持续时间不等的脉冲样变化。他有两个电导水平,即O和1,分别对应通道的关闭和开效状态。2.有的矩形脉冲簇状发放时,通道电流不在同一水平,可以明显观察到不同数目离子通道所形成的电流台阶,从而可推断出被测膜片的通道数目。3.有的通道可记录到圆滑型和方波形两种形式。4.有些通道开放活动是持续开放,中间被闪动样的关闭所中断,形成burst开放。有些通道开放活动是簇状开放与短期平静交替出现,形成簇状发放串(Cluster)Neher创膜片钳的膜电容检测与碳纤电极电化学检测联合运用的技术。日本双分子层膜片钳电流钳制

在膜电位改变时,在电场的作用下,重新分布导致通道的关闭,同时有电荷移动,称为门控电流。日本脑片膜片钳研究

20世纪初由Cole发明,Hodgkin和Huxleyw完善,目的是为了证明动作电位的峰电位是由于膜对钠的通透性发生了一过性的增大过程。但当时没有直接测定膜通透性的办法,于是就用膜对某种离子的电导来**该种离子的通透性。

为了弄清膜电导变化的机制和离子通道的存在,也为了克服电压钳的缺点Erwin和Bert在电压钳的基础上发明了膜片钳,并利用该技术***在蛙肌膜上记录到PA级的乙酰胆碱激动的单通道电流,***证明了离子通道的存在。并证明在完整细胞膜上记录到膜电流是许多单通道电流总和的结果。这一技术被誉为与分子克隆技术并驾齐驱的划时代的伟大发明。二人因此获得诺贝尔生理或医学奖。 日本脑片膜片钳研究

因斯蔻浦(上海)生物科技有限公司是一家集研发、生产、咨询、规划、销售、服务于一体的服务型企业。公司成立于2019-05-27,多年来在nVista,nVoke,3D bioplotte,invivo行业形成了成熟、可靠的研发、生产体系。公司主要经营nVista,nVoke,3D bioplotte,invivo等产品,产品质量可靠,均通过仪器仪表行业检测,严格按照行业标准执行。目前产品已经应用与全国30多个省、市、自治区。因斯蔻浦(上海)生物科技有限公司研发团队不断紧跟nVista,nVoke,3D bioplotte,invivo行业发展趋势,研发与改进新的产品,从而保证公司在新技术研发方面不断提升,确保公司产品符合行业标准和要求。因斯蔻浦(上海)生物科技有限公司以市场为导向,以创新为动力。不断提升管理水平及nVista,nVoke,3D bioplotte,invivo产品质量。本公司以良好的商品品质、诚信的经营理念期待您的到来!

信息来源于互联网 本站不为信息真实性负责