芬兰膜片钳离子电流

时间:2024年05月26日 来源:

离子选择性(selectivity)(大小和电荷)∶某一种离子只能通过与其相应的通道跨膜扩散(安静∶K>Na100倍、兴奋;Na>K10-20倍);各离子通道在不同状态下,对相应离子的通透性不同。门控特性(Gating)∶失活状态不仅是通道处于关闭状态,而且只有在经过一个额外刺激使通道从失活关闭状态进入静息关闭状态后,通道才能再度接受外界刺激而***开放。离子通道的功能(FunctionoflonChannels)1.产生细胞生物电现象,与细胞兴奋性相关。2.神经递质的释放、腺体的分泌、肌肉的运动、学习和记忆3.维持细胞正常形态和功能完整性膜离子通道的基因变异及功能障碍与许多疾病有关,某些先天性与后天获得性疾病是离子通道基因缺陷与功能改变的结果,称为离子通道病(ionchannelpathies)。由于电极前列与细胞膜的高阻封接,在电极前列笼罩下的那片膜事实上与膜的其他部分从电学上隔离。芬兰膜片钳离子电流

芬兰膜片钳离子电流,膜片钳

全细胞记录构型(whole-cellrecording) 高阻封接形成后,继续以负压抽吸使电极管内细胞膜破裂,电极胞内液直接相通,而与浴槽液绝缘,这种形式称为“全细胞”记录。它既可记录膜电位又可记录膜电流。其中膜电位可在电流钳情况下记录,或将玻管连到标准高阻微电极放大器上记录。在电压钳条件下记录到的大细胞全细胞电流可达nA级,全细胞钳的串联电阻(玻管和细胞内部之间的电阻)应当补偿。任何流经膜的电流均流经这一电阻,所引起的电压降将使玻管电压不同于细胞内的真正电位。电流愈大,愈需对串联电阻进行补偿。全细胞钳应注意细胞必需合理的小到其电流能被放大器测到的范围(25~50nA)。减少串联电阻的方法是玻管尖要比单通道记录大。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*29小时随时人工在线咨询.膜片钳技术封接(seal)是膜片钳记录的关键步骤之一。

芬兰膜片钳离子电流,膜片钳

膜片钳在通道研究中起着重要的作用。膜片钳技术可以直接观察和区分单个离子通道电流及其开闭时间,区分离子通道的离子选择性,同时发现新的离子通道和亚型,在记录单细胞电流和全细胞电流的基础上,进一步计算细胞膜上的通道数和开放概率。也可用于研究某些细胞内或细胞外物质对离子通道的开闭和通道电流的影响。同时用于研究细胞信号的跨膜转导和细胞分泌机制。结合分子克隆和定点突变技术,膜片钳技术可用于研究离子通道的分子结构与生物学功能的关系。膜片钳技术也可用于分析药物对其靶受体的作用位点。例如,神经元烟碱受体是配体门控离子通道,膜片钳全细胞记录技术可以通过记录烟碱诱发电流,直接反映神经元烟碱受体活动的全过程,包括受体与其激动剂和拮抗剂的亲和力、离子通道开闭的动态特征、受体的***等。用膜片钳全细胞记录技术观察拮抗剂对烟碱受体兴奋的量效曲线的影响,以确定其作用的动态特征。然后根据拮抗剂对受体***的影响分析,拮抗剂的作用是否是电压依赖性和使用依赖性的,我们可以从功能上区分拮抗剂对烟碱受体的不同作用位点,即判断拮抗剂是作用于受体的激动剂识别位点、离子通道还是其他变构位点。

向电极连续施加1mV、10~50ms的阶跃脉冲,电极入水后电阻约为4~6mΩ。此时,在计算机屏幕显示框中可以看到测试脉冲产生的电流波形。刚开始的时候增益不要设置太高,一般可以是1~5mV/PA,避免放大器饱和。由于细胞外液和电极液离子组成的差异导致液体接界电位,电极刚入水时测试波形的基线不在零线上。因此,需要将保持电压设置为0mV,并调整“电极不平衡控制”,使电极DC电流接近于零。当使用微操作器使电极靠近细胞时,当电极前缘接触细胞膜时,密封电阻指标Rm会上升,当电极轻微下压时,Rm指标会进一步上升。当通过细塑料管对电极施加轻微负压,且细胞膜特性良好时,Rm一般会在1min内迅速上升,直至形成Gω级高阻密封。一般在Rm达到100MΩ左右时,在电极前端施加一个轻微的负电压(-30~-30~-10mV),有利于gω密封的形成。此时的现象是电流波形再次变平,使电极从-40到-90mV超极化,有助于加速形成密封。为了确认gωseal的形成,可以提高放大器的增益,因此可以观察到除了脉冲电压开始和结束时的容性脉冲超前电流外,电流波形仍然是平坦的。膜片钳的设计使得夹持力均匀,不会损坏薄片材料。

芬兰膜片钳离子电流,膜片钳

ePatch虽然设备非常小巧,但功能完备,传统膜片钳设备能做的实验,用ePatch几乎都能做。具有voltage-clamp,current-clamp,zerocurrent-clamp三种模式,自动电极电压飘移补偿,C-fast-C-slow-R-series-P/N补偿,Bridgebalance补偿等功能。可以做全细胞记录也可以做单通道记录,膜片钳技术常做的离子通道电流,突触后电流,动作电位检测等实验都能轻松实现。公司还为此开发了友好的控制和记录软件,笔者上手接触了一下,发现跟AXON的软件类似,并且程序编辑更为简单易用。所记录到的数据可以直接使用Clampfit进行分析,可以说对于使用过AXON设备的膜片钳工作者来说,上手毫无难度。全细胞膜片钳记录是应用较早,也是普遍的钳位技术。脑片膜片钳技术

滔博生物膜片钳研究系统-细胞放电,组织切片放电,动物放电!芬兰膜片钳离子电流

高阻密封技术还***降低了电流记录的背景噪声,从而大幅提高了时间、空间和电流分辨率,如10μs的时间分辨率、1平方微米的空间分辨率和10-12年的电流分辨率。影响电流记录分辨率的背景噪声不仅来自膜片钳放大器本身,还来自信号源的热噪声。信号源就像一个简单的电阻,其热噪声为σn=4Kt△f/R其中σn为电流均方差的平方根,k为玻尔兹曼常数,t为温度,△f为测量带宽,R为电阻值。可以看出,为了获得低噪声电流记录,信号源的内阻必须非常高。如果在1kHz带宽、10%精度的条件下记录1pA的电流,信号源的内阻应该大于2gω。电压钳技术只能测量内阻为100kω~50mω的大电池的电流,常规技术和制备无法达到所需的分辨率。芬兰膜片钳离子电流

信息来源于互联网 本站不为信息真实性负责