国内荧光双光子显微镜最大分辨率

时间:2024年07月20日 来源:

细胞内钙离子作为重要的信号分子其作用具有时间性和空间性。当个细胞兴奋时,产生了一个电冲动,此时,细胞外的钙离子流入该细胞内,促使该细胞分泌神经递质,神经递质与相邻的下一级神经细胞膜上的蛋白分子结合,促使这一级神经细胞产生新的电冲动。以此类推,神经信号便一级一级地传递下去,从而构成复杂的信号体系,终形成学习、记忆等大脑的高级功能。在哺乳动物神经系统中,钙离子同样扮演着重要的信号分子的角色。静息状态下大部分神经元细胞内钙离子浓度约为50-100nM,而细胞兴奋时钙离子浓度能瞬间上升10-100倍,增加的钙离子对于突触囊泡胞吐释放神经递质的过程必不可少。众所周知,只有游离钙才具有生物学活性,而细胞质内钙离子浓度由钙离子的内外流平衡所决定,同时也受钙结合蛋白的影响。细胞外钙离子内流的方式有很多种,其中包括电压门控钙离子通道、离子型谷氨酰胺受体、烟碱型胆碱能受体(nAChR)和瞬时受体电位C型通道(TRPC)等。神经元钙成像的原理就是利用特殊的荧光染料或钙离子指示剂将神经元中钙离子浓度的变化通过荧光强度表现出来,以反映神经元活性。该方法可以同时去观察多个功能或位置相关的脑细胞。双光子显微镜可以进行厚的组织样品拍摄。国内荧光双光子显微镜最大分辨率

国内荧光双光子显微镜最大分辨率,双光子显微镜

双光子显微镜在各领域研究中已有许多成功实例;生物领域:贝尔实验室的Svoboda等人研究了大脑皮层神经元细胞内钙离子动力学情形。利用双光子显微镜观察到的现象证明了钙离子的增加依赖于肌体触发的钠离子作用电势。信息领域:美国科学家Rentzepis提出了一种在现有二维光盘的基础上将数据储存扩展到三维空间。由于双光子激发具有作用精细体积小的特点,避免了层与层之间的互相干扰,较大地提高了数据储存密度。双光子显微镜已延伸到各个领域研究中,它能对样品进行三维观察,其基础双光子激发效应也具有极高的应用价值。我们可以相信,随着科技不断发展,其他技术的不断结合,双光子显微镜将得到更大的发展与更广的应用。进口ultima双光子显微镜光子探测双光子显微镜使用的是高能量锁模脉冲器。

国内荧光双光子显微镜最大分辨率,双光子显微镜

生物样品的三维观察是了解细胞功能的重要方法之一。目前已有的三维荧光成像技术有光学显微镜、点阵照明和激光扫描显微镜(如共焦显微镜和双光子显微镜)。其中,激光扫描显微镜利用转盘可以进行多焦点激光扫描,提高了时间分辨率,有利于减少活细胞成像中的光损伤。本文主要实现可见光双光子激发和多焦点激光扫描的结合,**终提高三维延迟扫描中的空间分辨率和成像对比度,这也是可见光双光子激发(v2PE)在超高分辨率显微镜中的应用。

单光子显微技术是成熟的荧光显微技术,但由于其使用的激发光波长较短,成像深度有限;能量较大,会造成对荧光物质的漂白,光毒性严重。激光共焦扫描显微镜由于共焦显微镜的孔径很小,实现样本三维成像要逐点扫描,成像速度慢,对样本损害大,很难用于长时间活细胞成像。而宽场显微镜能够很好地实现实时动态成像,光漂白小,因而较早应用于活细胞内的实时检测,但宽场显微镜由于离焦信号的干扰,难以实现多维成像。双光子荧光显微镜(Two-PhotonLaser-ScanningMicroscopy)。双光子显微成像技术是近些年发展起来的结合了共聚焦激光扫描显微镜和双光子激发技术的一种新型非线性光学成像方法,采用长波激发,能对组织进行深层次成像。常用的比较好激发波长大多位于800-900nm,而水、血液和固有组织发色团对这个波段的光吸收率低,此外散射的激发光子不能激发样品,因此背景第,光损伤小,适用于在体检测。双光子荧光成像技术能准确定位细胞内置入的微电极位置,从而观察胞体、树突甚至单个树突棘的活性。研究者可完整的观察神经组织的分辨荧光图像,甚至可以分辨神经细胞单个树突棘中的钙分布。微型双光子显微镜的优势是。

国内荧光双光子显微镜最大分辨率,双光子显微镜

双光子显微镜(2PM)可以对钙离子传感器和谷氨酸传感器进行亚细胞分辨率的成像,从而测量不透明脑深部的活动。成像膜的电压变化可以直接反映神经元的活动,但神经元活动的速度对于常规的2PM来说太快了。目前,电压成像主要由宽视场显微镜实现,但其空间分辨率较差,且只能在浅深度成像。因此,为了以高空间分辨率成像不透明脑中膜电压的变化,需要将成像速率提高2PM。面向模块输出端的子脉冲序列可视为从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成空间分离和时间延迟的聚焦阵列。然后,该模块被集成到一个带有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是重复频率为1MHz的920nm激光器。FACED模块可以产生80个脉冲焦点,脉冲时间间隔为2ns。这些焦点是虚拟源的图像。虚光源越远,物镜处的光束尺寸越大,焦点越小。光束可以沿Y轴比沿X轴更好地填充物镜,从而在X轴上产生0.82m和0.35m的横向分辨率。双光子显微镜可以在小鼠的的任何部位进行有生命体成像。国外双光子显微镜代理商

双光子显微镜角膜成像。国内荧光双光子显微镜最大分辨率

临研所、病理科和科研处邀请北京大学王爱民副教授在2020年12月22日做了题目为“新一代微型双光子显微成像系统介绍及其在临床医疗诊断”的学术报告。学术报告由临研所医学实验研究平台潘琳老师主持。王爱民,北京大学信息科学技术学院副教授,毕业于北京大学物理系,获学士、硕士学位,后于英国巴斯大学物理系获博士学位。该研究组研发的微型双光子显微镜,第1次在国际上获得了小鼠大脑神经元和神经突触清晰稳定的动态信号,该成果获得了2017年度“中国光学进展”和“中国科学进展”,并被NatureMethods评为2018年度“年度方法--无限制行为动物成像”。目前,该研究组正在研究新一代双光子显微成像技术在临床诊断中的应用,为未来即时病理、离体组织检测、术中诊断等提供新的影像手段和分析方法。国内荧光双光子显微镜最大分辨率

信息来源于互联网 本站不为信息真实性负责