高速高分辨率多光子显微镜方案

时间:2024年09月28日 来源:

快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统依赖于远程聚焦、SLM和可调电动透镜。证实了多光子显微镜对皮肤和别的皮肤病的诊断的可行性。高速高分辨率多光子显微镜方案

高速高分辨率多光子显微镜方案,多光子显微镜

细胞在受到外界刺激时,随着刺激时间的增长,即使刺激继续存在,Ca2+荧光信号不但不会继续增强,反而会减弱,直至恢复到未加刺激物时的水平。对于细胞受精过程中Ca2+荧光信号的变化情况,研究发现,配了在粘着过程中,Ca2+荧光信号未发生任何变化,而配子之间发生融合作用时,Ca2+荧光信号强度却会出现一个不稳定的峰值,并可持续几分钟。这些现象,对研究受精发育的早期信号及Ca2+在卵细胞和受精卵的发育过程中的作用具有重要的意义。在其它一些生理过程如细胞分裂、胞吐作用等,Ca2+荧光信号强度也会发生很强的变化。灵长类多光子显微镜数据分析光子显微镜是一种使用可见光或近红外光的显微镜。

高速高分辨率多光子显微镜方案,多光子显微镜

2020年,TonmoyChakraborty等人提出了加速2PM轴向扫描速度的方法[2]。在光学显微镜中,物镜或样品缓慢的轴向扫描速度限制了体成像的速度。近年来,通过使用远程聚焦技术或电调谐透镜(ETL)已经实现了快速轴向扫描。但远程对焦时对反射镜的机械驱动会限制轴向扫描速度,ETL会引入球差和高阶像差,无法进行高分辨率成像。为了克服这些限制,该小组引入了一种新的光学设计,可以将横向扫描转换为无球面像差的轴向扫描,以实现高分辨率成像。有两种方法可以实现这种设计。***个可以执行离散的轴向扫描,另一个可以执行连续的轴向扫描。如图3a所示,特定装置由两个垂直臂组成,每个臂具有4F望远镜和物镜。远程聚焦臂由振镜扫描镜(GSM)和空气物镜(OBJ1)组成,另一个臂(称为照明臂)由浸没物镜(OBJ2)组成。两个臂对齐,使得GSM与两个物镜的后焦平面共轭。准直后的激光束经偏振分束器反射进入远程聚焦臂,由GSM进行扫描,使OBJ1产生的激光焦点可以进行水平扫描。

使用MPM对神经元进行成像时,通过随机访问扫描—即激光束在整个视场上的任意选定点上进行快速扫描—可以只扫描感兴趣的神经元,这样不仅避免扫描到任何未标记的神经纤维,还可以优化激光束的扫描时间。随机访问扫描可以通过声光偏转器(AOD)来实现,其原理是将具有一个射频信号的压电传感器粘在合适的晶体上,所产生的声波引起周期性的折射率光栅,激光束通过光栅时发生衍射。通过射频电信号调控声波的强度和频率从而可以改变衍射光的强度和方向,这样使用1个AOD就可以实现一维横向的任意点扫描,利用1对AOD,结合其他轴向扫描技术可实现3D的随机访问扫描。但是该技术对样本的运动很敏感,易出现运动伪影。目前,快速光栅扫描即在FOV中进行逐行扫描,由于利用算法可以轻松解决运动伪影而被普遍的使用。实现细胞内分子级观测,多光子显微镜开启生命科学新篇章。

高速高分辨率多光子显微镜方案,多光子显微镜

单光子激发荧光的过程,就是荧光分子吸收一个光子,从基态跃迁到激发态,跃迁以后,能量较大的激发态分子,通过内转换把部分能量转移给周围的分子,自己回到比较低电子激发态的比较低振动能级。处于比较低电子激发态的比较低振动能级的分子的平均寿命大约在10s左右。这时它不是通过内转换的方式来消耗能量,回到基态,而是通过发射出相应的光量子来释放能量,回到基态的各个不同的振动能级时,就发射荧光。因为在发射荧光以前已经有一部分能量被消耗,所以发射的荧光的能量要比吸收的能量小,也就是荧光的特征波长要比吸收的特征波长来的长。多光子显微镜的发展历史充满了贡献、开发、进步和数个世纪以来多个来源和地点的改进。进口多光子显微镜三维分辨率

多光子显微镜适用于动物大脑皮层深层(400微米)细胞的形态、生理学研究。高速高分辨率多光子显微镜方案

使用基因编码的荧光探针可以在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。使用双光子显微镜(2PM)可以以亚细胞分辨率对钙离子传感器和谷氨酸传感器成像,从而测量不透明大脑深处的活动;成像膜电压变化能直接反映神经元活动,但神经元活动的速度对于常规的2PM来说太快。目前电压成像主要通过宽场显微镜实现,但它的空间分辨率较差并且于浅层深度。因此要在不透明的大脑中以高空间分辨率对膜电压变化进行成像,需要明显提高2PM的成像速率。高速高分辨率多光子显微镜方案

信息来源于互联网 本站不为信息真实性负责