因斯蔻浦(上海)生物科技有限公司
因斯蔻浦(上海)生物科技有限公司

因斯蔻浦(上海)生物科技有限公司

地址:上海市普陀区上海市奉贤区金碧路2012号

芬兰多通道膜片钳高阻抗封接

时间:2025年02月19日 来源:因斯蔻浦(上海)生物科技有限公司

高阻封接技术还明显降低了电流记录的背景噪声,从而戏剧性地提高了时间、空间及电流分辨率,如时间分辨率可达10μs、空间分辨率可达1平方微米及电流分辨率可达10-12A。影响电流记录分辨率的背景噪声除了来自于膜片钳放大器本身外,主要还是信号源的热噪声。信号源如同一个简单的电阻,其热噪声为σn=4Kt△f/R式中σn为电流的均方差根,K为波尔兹曼常数,t为温度,△f为测量带宽,R为电阻值。可见,要得到低噪声的电流记录,信号源的内阻必需非常高。如在1kHz带宽,10%精度的条件下,记录1pA的电流,信号源内阻应为2GΩ以上。电压钳技术只能测量内阻通常达100kΩ~50MΩ的大细胞的电流,从而不能用常规的技术和制备达到所要求的分辨率。膜片钳,开启细胞电生理研究新篇章!芬兰多通道膜片钳高阻抗封接

芬兰多通道膜片钳高阻抗封接,膜片钳

膜片钳技术的发展∶全自动膜片钳技术(Automatedpatchclamptechnique)的出现标志着膜片钳技术已经发展到了一个崭新阶段,从这个意义上说,前面所讲的膜片钳技术我们称之为传统膜片钳技术(Traditionalpatchclamptechnique),传统膜片钳技术每次只能记录一个细胞(或一对细胞),对实验人员来说是一项耗时耗力的工作,不适合在药物开发初期和中期进行大量化合物的筛选,也不适合需要记录火量细胞的基础实验研究。全自动膜片钳技术的出现在很大程度上解决了这些问题,它不仅通量高,一次能记录几个甚至几十个细胞,而且从找细胞、形成封接、破膜等整个实验操作实现了自动化,免除了这些操作的复杂与困难。这两个优点使得膜片钳技术的工作效率提高了!全自动膜片钳技术采用的标本必须是悬浮细胞,像脑片这类标本无法采用。此外,全自动膜片钳技术只能进行全细胞记录模式、穿孔膜片钳记录模式以及细胞贴附式单通道记录模式,而不能进行其他模式的记录。日本多通道膜片钳产品介绍细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的。

芬兰多通道膜片钳高阻抗封接,膜片钳

内面向外膜片(inside-outpatch)高阻封接形成后,在将微管电极轻轻提起,使其与细胞分离,电极端形成密封小泡,在空气中短暂暴露几秒钟后,小泡破裂再回到溶液中就得到“内面向外”膜片。此时膜片两侧的膜电位由固定电位和电压脉冲控制。浴槽电位是地电位,膜电位等于玻管电位的负值。如放大器的电流监视器输出是非反向的,则输出将与膜电流(Im)的负值相等。外面向外膜片(out-sidepatch)高阻封接形成后,继续以负压抽吸,膜片破裂再将玻管慢慢地从细胞表面垂直地提起,断端游离部分自行融合成脂质双层,此时高阻封接仍然存在。而膜外侧面接触浴槽液。这种膜片形式应测膜片电阻,并消除漏电流和电容电流。整个过程要当心是否形成囊泡。如果浴槽保持地电位水平,膜电位即与玻管电位相等。如放大器是非反向的,放大器的输出将与Im值相等。

膜片钳技术是一种细胞内记录技术,是研究离子通道活动的蕞佳工具,也是应用蕞广的电生理技术之一。该技术通过施加负压将微玻管电极(膜片电极或膜片吸管)的前端与细胞膜紧密接触,形成GΩ以上的阻抗,使电极开口处的细胞膜与其周围膜在电学上绝缘。被孤立的小膜片面积为μm量级,内中只有少数离子通道。玻璃微电极中含有一根浸入电解溶液中的导线,用于传导离子。在此基础上对该膜片施行电压钳位(即保持跨膜电压恒定),如果单个离子通道被包含在膜片内,则可对此膜片上的离子通道的电流进行监测记录。通过观测单个通道开放和关闭的电流变化,可直接得到各种离子通道开放的电流幅值分布、开放几率、开放寿命分布等功能参量,并分析它们与膜电位、离子浓度等之间的关系。还可把吸管吸附的膜片从细胞膜上分离出来,以膜的外侧向外或膜的内侧向外等方式进行实验研究。这种技术对小细胞的电压钳位、改变膜内外溶液成分以及施加药物都很方便。由于电极前列与细胞膜的高阻封接,在电极前列笼罩下的那片膜事实上与膜的其他部分从电学上隔离。

芬兰多通道膜片钳高阻抗封接,膜片钳

向电极连续施加1mV、10~50ms的阶跃脉冲,电极入水后电阻约为4~6mΩ。此时,在计算机屏幕显示框中可以看到测试脉冲产生的电流波形。刚开始的时候增益不要设置太高,一般可以是1~5mV/PA,避免放大器饱和。由于细胞外液和电极液离子组成的差异导致液体接界电位,电极刚入水时测试波形的基线不在零线上。因此,需要将保持电压设置为0mV,并调整“电极不平衡控制”,使电极DC电流接近于零。当使用微操作器使电极靠近细胞时,当电极前缘接触细胞膜时,密封电阻指标Rm会上升,当电极轻微下压时,Rm指标会进一步上升。当通过细塑料管对电极施加轻微负压,且细胞膜特性良好时,Rm一般会在1min内迅速上升,直至形成Gω级高阻密封。一般在Rm达到100MΩ左右时,在电极前端施加一个轻微的负电压(-30~-30~-10mV),有利于gω密封的形成。此时的现象是电流波形再次变平,使电极从-40到-90mV超极化,有助于加速形成密封。为了确认gωseal的形成,可以提高放大器的增益,因此可以观察到除了脉冲电压开始和结束时的容性脉冲超前电流外,电流波形仍然是平坦的。由此形成了一门细胞学科—电生理学,即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。美国双电极膜片钳专题

通过研究离子通道的离子流, 从而了解离子运输、信号传递等信息。芬兰多通道膜片钳高阻抗封接

ePatch虽然设备非常小巧,但功能完备,传统膜片钳设备能做的实验,用ePatch几乎都能做。具有voltage-clamp,current-clamp,zerocurrent-clamp三种模式,自动电极电压飘移补偿,C-fast-C-slow-R-series-P/N补偿,Bridgebalance补偿等功能。可以做全细胞记录也可以做单通道记录,膜片钳技术常做的离子通道电流,突触后电流,动作电位检测等实验都能轻松实现。公司还为此开发了友好的控制和记录软件,笔者上手接触了一下,发现跟AXON的软件类似,并且程序编辑更为简单易用。所记录到的数据可以直接使用Clampfit进行分析,可以说对于使用过AXON设备的膜片钳工作者来说,上手毫无难度。滔博生物TOP-Bright专注基于多种离子通道靶点的化合物体外筛选,服务于全球药企的膜片钳公司,快速获得实验结果,专业团队,7*61小时随时人工在线咨询.芬兰多通道膜片钳高阻抗封接

信息来源于互联网 本站不为信息真实性负责

欢迎!您可以随时使用
在线留言软件与我沟通

知道了

undefined
微信扫一扫
在线咨询