山东新型混合动力控制单元介绍

时间:2021年08月21日 来源:

      在混合动力汽车控制应用中,全局优化管理策略将车辆的经济性和排放性设定为控制目标,以各种系统变量为优化的约束条件,建立优化模型,**终计算出相应的能量分配。该策略还包括基于多目标变量数学规划、基于动态规划和基于**小值理论的全局优化管理策略。该管理策略需要在知道车辆整个运行区间(如整个特定的驱动循环)整体数据的前提下才能进行过程的优化求解,因而不能应用在实际车辆的控制中,因为无法提前知道未来的车辆工况数据(如车速和路面坡度等)。但是在仿真过程中进行的优化结论可以为可实际应用的混合动力汽车控制策略提供参考依据,从中了解整车的行为特性。如何看待混合动力控制单元的前景?山东新型混合动力控制单元介绍

广义上说,混合动力汽车(Hybrid Vehicle)是指车辆驱动系统由两个或多个能同时运转的单个驱动系统联合组成的车辆,车辆的行驶功率依据实际的车辆行驶状态由单个驱动系统单独或共同提供。通常所说的混合动力汽车,一般是指油电混合动力汽车(Hybrid Electric Vehicle, HEV),即采用传统的内燃机(柴油机或汽油机)和电动机作为动力源。而并联混合动力系统包括两条**的动力传递路径,发动机和电机可以同时驱动车辆,也可以单独驱动车辆。 山东一种混合动力控制单元研究系统中所有的控制系统都已输入扭矩作为控制目标,发动机也不例外。

    在整车扭矩需求、发动机的状态、电池的状态、电机的状态以及**环境参数相同的条件下,改变发动机的扭矩增加速率,通过齿圈输出扭矩和电池的使用功率的变化的分析对系统影响情况。综合分析,基本上可以看出TCR 对系统的整车需求扭矩和电池功率使用的影响,具体如何选择 TCR,需要在台架尤其是整车的动力性和平顺性测试时,进行重新的选择和标定。由于理论设计和实际控制存在如下的不同点:主要体现在部件的转动惯量、扭矩响应、通讯延迟、扭矩特性、效率和**环境等方面,该模型考虑实际控制过程中的各种因素,通过这部分控制模型将预先设计的目标点控制在理论设计范围内,同时实现了对电池充放电的精确控制,防止了对电池造成过充和过放。

    机械动力分流混联式混合动力传动系统,可以通过对电机的控制实现输入转速相对于输出转速的无极变化,这种传动系统又叫做电子控制无级变速系统(e-CVT),有如下特点:1)在进行动力传递时,不需要通过离合器等机构实现速比的变化;2)e-CVT可以实现扭矩的无缝、平滑的传递,没有扭矩的中断;3)可以把动力系统的转速-扭矩脉谱的特性转换为车辆传动系统驱动轮上的宽范围的转速和转矩的变化特性;4)无论是柴油机还是汽油机,在中等转速和高负荷工作区域内的效率是比较高的,e-CVT可以将整车的道路负荷与发动机的优化区域对应起来主要,将发动机控制在高效区间工作。混合动力控制单元具体的作用。

    混合动力系统中发动机作为主要动力源,其工作状态直接决定了整车的工作模式,有发动机参与工作的状态为混合动力驱动状态,没有发动机参与工作的状态为纯电动或停驶状态。在混合动力系统中对于发动机控制,除了与整车的经济性相关的工作和非工作两种状态以外,还有从非工作状态向工作状态转换的过程控制和从工作状态向非工作状态转换的过程控制,分别是起动过程控制和熄火过程控制,这两个过程控制与整车的平顺性和排放性直接相关,所以发动机状态的管理是本文所研究整车工作模式管理中**重要的内容。混合动力控制单元是如何工作的?重庆新型混合动力控制单元介绍

混合动力汽车控制系统的关键在于控制策略及算法。山东新型混合动力控制单元介绍

    智能控制理论的基本出发点是模仿人的智能,根据被控系统的定性信息和定量信息形成推理决策,以实现对难以建模的非线性复杂系统的控制,所以非常适合于混合动力汽车动力总成的控制。目前基于智能控制理论的混合动力汽车控制策略主要有3种:模糊逻辑控制策略、神经网络控制策略和遗传算法控制策略。模糊逻辑控制策略是本质上属于基于规则的控制策略,它将经典数理逻辑与模糊数学相结合,模拟人思维推理和决策方式的智能控制方式。其基本特征是利用人的经验、知识和推理技术及控制系统提供的状态信息,而不需要建立被控系统的精确数学模型。 山东新型混合动力控制单元介绍

信息来源于互联网 本站不为信息真实性负责