嘉兴动力设备监测控制策略

时间:2023年09月13日 来源:

随着电力电子技术、自动化控制技术的不断发展,电机在工业生产以及家用电器中得到了的应用,在市场竞争中正逐步显示自己的优势。传统的电机在线监测装置多采用电流表、电压表、功率表等较为原始的仪表来进行测量,采用人工读数的方式进行数据的测量、记录和分析,这不仅硬件冗余,系统杂乱,而且操作极为不便,更有甚者,读数误差大,测试结果不准确。有些场合需要进行电机多种参数的监测,这样就势必会加大各种测量仪器的使用以及人力资源的投入。传统的监测方法要求监测人员具有较高的技能和水平,但是由于人为误差的不可避免,这种监测方法无法做定量分析,无法更加准确、实时的掌握电机的运行状态和故障。技术实现要素:本发明提出了一种电机在线监测装置和方法,通过对扭矩、转速、各相电流、电压、温度、输入、输出功率和效率进行实时动态的监测以及对过电压、过电流、过热进行报警停机,解决现有技术中监测参数不能定量分析以及无法更加准确、实时的掌握电机运行状态和故障的技术问题。盈蓓德科技通过自主开发的软件和算法,进行数控机床的刀具质量监测,提前预判刀具运行情况。嘉兴动力设备监测控制策略

嘉兴动力设备监测控制策略,监测

从整体的网络架构来看,智能振动噪声监诊子系统利用安装在设备上的传感器节点获取设备的健康状态监测信号和运行参数数据,经网络层集中上传至设备健康监测物联网综合管理平台,实现数据传输。应用层实现监测信号的分析、故障特征提取、故障诊断及预测功能,实现智能化管理、应用和服务。设备健康监测物联网综合管理平台具有强大的数据采集分析处理、数据可视、设备运维、故障诊断、故障报警等功能。通过实时监测查看、统计、追溯,实现对其管辖设备的实时监测和运行维护,基于运行信息和检修信息、自动生成设备管理报表,实现设备可靠性、故障数据、更换备件等信息统计,为维修方案提供依据。无锡旋转机械监测盈蓓德科技测量电机关键参数,利用AI融合工业机理算法,构建故障模型库,实现边缘侧数据实时分析和决策。

嘉兴动力设备监测控制策略,监测

故障诊断可以根据状态监测系统提供的信息来查明导致系统某种功能失调的原因或性质,判断劣化发生的部位或部件,以及预测状态劣化的发展趋势等。电机故障诊断的基本方法主要有:1、电气分析法,通过频谱等信号分析方法对负载电流的波形进行检测从而诊断出电机设备故障的原因和程度;检测局部放电信号;对比外部施加脉冲信号的响应和标准响应等;2、绝缘诊断法,利用各种电气试验装置和诊断技术对电机设备的绝缘结构和参数、工作性能是否存在缺陷做出判断,并对绝缘寿命做出预测;3、温度检测方法,采用各种温度测量方法对电机设备各个部位的温升进行监测,电机的温升与各种故障现象相关;4、振动与噪声诊断法,通过对电机设备振动与噪声的检测,并对获取的信号进行处理,诊断出电机产生故障的原因和部位,尤其是对机械上的损坏诊断特别有效。5、化学诊断的方法,可以检测到绝缘材料和润滑油劣化后的分解物以及一些轴承、密封件的磨损碎屑,通过对比其中一些化学成分的含量,可以判断相关部位元件的破坏程度。

低信噪比微弱信号特征早期故障的信号处理。早期故障信息具有明显的低信噪比微弱信号的特征,为实现早期故障有效分析,涉及方法包括:多传感系统检测及信息融合,非平稳及非线性信号处理,故障征兆量和损伤征兆量信号分析,噪声规律与特点分析,以及相关数据挖掘、盲源分离、粗糙集等方法。故障预测模型构建。构建基于智能信息系统的设备早期故障预测模型,这类模型大致有两个途径,分别是物理信息预测模型以及数据信息预测模型,或构建这两类预测模型相融合的预测模型。运行状态劣化的相关评价参数、模式及准则。如表征设备状态发展的参数及特征模式,状态发展评价准则及条件,面向安全保障的决策理论方法,稳定性、可靠性及维修性评估依据及判据等。物联网声学监控系统以音频数据,辅以其他设备参数,通过物联网技术实现设备状态的远程感知,基于AI神经网络技术,计算并提取设备音频特征,从而实现设备运行状态的实时评估与故障的早期识别。帮助企业用户提升生产效率,保证生产安全,优化生产决策。电机监测和故障预判系统应用行业很多,助力实现工业设备数智化管理和预测性维护。

嘉兴动力设备监测控制策略,监测

传统方法通常无法自适应提取特征, 同时需要一定的离线数据训练得到检测模型, 但目标对象在线场景下采集到的数据有限, 且其数据分布与训练数据的分布可能因随机噪声、变工况等原因而存在差异, 导致离线训练的模型并不完全适合于在线数据, 容易降低检测结果的准确性; 其次, 上述方法通常采用基于异常点的检测算法, 未充分考虑样本前后的时序关系, 容易因数据微小波动而产生误报警, 降低检测结果的鲁棒性; 再次, 为降低误报警, 这类方法需要反复调整报警阈值. 此外, 基于系统分析的故障诊断方法利用状态空间描述建立机理模型, 可获得理想的诊断和检测结果, 但这类方法通常需要提前知道系统运动方程等信息, 对于轴承运行来说, 这类信息通常不易获知. 近年来, 深度神经网络已被成功应用于早期故障特征的自动提取和识别, 可自适应地提取信息丰富和判别能力强的深度特征, 因此具有较好的普适性. 但是, 这类方法一方面需要大量的辅助数据进行模型训练, 而历史采集的辅助数据与目标对象数据可能存在较大不同, 直接训练并不能有效提升在线检测的特征表示效果; 另一方面, 在训练过程中未能针对早期故障引发的状态变化而有目的地强化相应特征表示. 因此, 深度学习方法在早期故障在线监测中的应用仍存在较大的提升空间.盈蓓德科技可以搭建造价低廉,性能稳定,安装方便,使用简单,维护工作量少的旋转类设备振动监测系统。无锡旋转机械监测

监测利用各种传感器在电机运行时对电机的状态提取相关数据。故障诊断使用计算机及其相应智能软件。嘉兴动力设备监测控制策略

作为工业领域的一种关键旋转设备,对于终端用来说,关于电机维护的主要是电气班组的设备工程师、电机维护工程师、电机检修人员等;对于电机厂家以及电机经销商来说,主要是电机售后服务工程师、电机销售人员,会涉及到电机的运行维护;险此之外,还有第三方检修人员等。目前已经有很多智能产品号称可以实现电机的预测性维护,但问题也非常多。1)传感器安装难。设备状态监测需要振动、噪声、温度传感器,通讯协议并不统一,自成体系,安装、使用、维护成本高昂。2)技术成本高。工业场景设备类型多,运行工况复杂,预测性维护算法涉及数据预处理、工业机理、机器学习,技术要求很高。3)时间成本高。预测性维护要实现,前期需要大量历史数据的支撑,数据采集、归纳、分析是一个漫长的过程。以电机预测性维护理念来对电机智能运维,虽然被各大宣传媒体提得很多,但还远远未到落地很好乃至普及的程度,不论是预测性维护的预测效果,还是电机的智能运维的市场推广以及市场接受程度,对于电机维护人员为**的电机运维来说,都还有很远的一段距离!嘉兴动力设备监测控制策略

信息来源于互联网 本站不为信息真实性负责