手性膦哌啶合成

时间:2021年01月13日 来源:

寻找生物活性化合物是药物合成中的驱动力。由于进入临床研究的大多数新分子都包含至少一个杂环部分-主要是N杂环部分-这些环系统的修饰在药物开发过程中起着重要作用。因此,总是始终需要新颖的杂环系统,以寻找新的命中结构和优化前导化合物。尽管理论上是无限制的,但实际上,由于技术和经济原因,今*有很少数量的杂环可用于药物化学。 我们对新的且易于获得的杂环构件的兴趣来自我们对ongoing吨酮(=二苯并-γ-吡喃酮)衍生物的持续研究,在该研究中,一个苯环被吡唑核取代,另一个苯环被另一个杂环部分取代。这些有趣的亚结构存在于几种生物活性化合物中,例如抗溃疡药amlexanox(Aphthasol™)或A2亚型选择性腺苷受体拮抗剂A 。因此,我们研究了几种合成策略,以促进这种生物学上有趣的支架的改变。虽然我们的主要研究基于合成方法以方便地改变吡唑重要处的取代基(尤其是C-3,N-1和N-2位的取代基),但我们还是将注意力转向了分子骨架的修饰以及在其他位置引入取代基的可能性。这些方法的组合显然将允许访问专门定制的分子。尽管如此,据报道,到目前为止,只有少数骨架-主要是三环骨架,如可能的四个吡啶。P = C键作为三元杂环阳离子的砌块:合成,结构和机械研究。手性膦哌啶合成

亚硝基广用于有机合成中,1a–c主要用作亲电试剂和1,3-偶极子,1d–f也具有立体定向方式,1d–h和自旋阱; 1a–c,i–k具有也被用作羰基的活性当量。1c,l–m,2a然而,关于α-氨基硝酮的报道很少。2它们可以衍生自腈和羟胺,2a来自亚氨基甲酸酯或a-氯亚胺,2g来自羟胺和亚甲基胺,2g,3d来自仲胺2f和亚硝基化合物,以及其他硝酮。2b研究了互变异构体2a,3d和a-氨基硝酮的晶体结构2a,3d,但*报道了使用此类化合物Prabhakar及其同事[2a]提供了合成中的化合物,他们在单烷基化和二酰化反应中利用了α-氨基硝酮的亲核中心。从3-氧代丁酸N-吡啶-2-基酰胺和亚硝基苯以良好的产率获得稳定的α-酰胺基-α-氨基硝酮。 然后,将α-酰胺基-α-氨基硝酮用作新的通用构建基块,以通过双亲电子试剂和双亲核试剂获得各种杂环。 以二碘甲烷为试剂,形成1.2,5-恶二嗪衍生物,而与芳香族1,2-,1,3-和1,4-二胺反应生成喹喔啉,喹唑啉,嘧啶和二苯并[d,f] [1, 3]二氮杂derivatives衍生物。TADDOL Phos相关哌啶研究进展5-(1-吡咯基)-2-苯硫噻吩[2,3-D]嘧啶作为杂环合成的砌块。

( Diels-Alder反应的工业应用Ifetroban钠是一种选择性的血栓烷受体拮抗剂,已在Ifetroban钠(BMS-180291)的II期临床试验中作为抗血小板药物进行了研究。它们由于具有高亲电性而被用作关键的起始原料,其中β-芳酰基丙烯酸容易与包括氮和碳亲核体在内的亲核体反应,从而根据攻击性亲核体和反应介质(中性)的性质提供环状或正构迈克尔加合物,碱性和酸性)。由于迈克尔加成反应可以被认为是构建环结构的有效串联策略。因此,这些起始原料将用于制备具有3(2H)-哒嗪酮部分的重要生物活性的更有趣的杂环化合物。4-(4-乙酰氨基/溴苯基)-4-氧鼠2-烯酸与碳亲核试剂的反应取决于亲核试剂和培养基(酸性或碱)的类型提供迈克尔加合物。将加合物2和3用作合成一些杂环化合物的关键原料,其包括哒嗪酮,呋喃酮,1,2-恶唑蛋白-5-1,1.2-二氮腺嘌呤,吡啶和羟基吡啶衍生物。空间因子在区域选择性中起重要作用。通过元素分析和光谱数据阐明了新合成化合物的结构。

乙酰二羧酸二甲酯(DMAD)是具有两个反应性酯基的电子缺乏乙炔化合物。它是一种特权和优势的分子,其在杂环中容易且实际地参与。由于存在两种酯吸电子基团,DMAD容易经历迈克尔添加,然后杂环化以提供具有不同环尺寸的通用杂环化合物。 DMAD在温和条件下进行Diels-Alder反应,得​​到杂环,其不能通过常规杂环容易地合成。使用DMAD开通了珍贵的网关,以合成一些重要的融合环杂环系统,既不通过替代路径易于获得,也不是通过使用市售的起始材料来获得。近来科学家正尝试突出DMAD在各种杂环化合物的合成中的应用。来自乙烯基N-Ailylic酰胺的恶唑啉:杂交杂环砌块的反应性。

哌啶,无色液体。哌啶,用作溶剂、有机合成中间体、环氧树脂交联剂、缩合催化剂等。有像胡椒的气味。能与水混溶,溶于乙醇、**、**及苯。35%哌啶的恒沸水溶液沸点为92.8℃;pKa11.1;碱性略强于吡啶。与酸成盐,化学性质与脂肪仲胺相似一种强有机碱,与无机酸作用生成盐。能与蒸汽一同挥发。用于制药,主要是盐酸哌啶和硝酸哌啶(片状晶体,熔点110℃)。也用于其他有机合成,并用作环氧树脂的熟化剂等。由吡啶经氢化而制得。具有较强的还原性。Te-N二次键合相互作用力场的参数化及其在基于杂环砌块的超分子结构设计中的应用。Binap相关哌啶合成

硫代氧化物衍生物作为合成靶杂环化合物的砌块,其抗微生物评估。手性膦哌啶合成

吡啶嘧啶是吡啶二嗪家族中重要和研究较多的化合物。此外,许多杂合嘧啶类药物作为抗瘤药具有诱人的化学疗特性。利培酮,SSR6907和ramastine是吡啶并[1,2-a]嘧啶-4-酮的衍生物,具有抗精神类疾病活性。 Dominguez等。 报道,一些杂合的三环系统表现出显着的抗疟活性。据指出,这类化合物的生物反应性基本上是由于其分子结构中存在吡啶并[1,2-a]嘧啶酮部分[11]。在这些研究的推动下,科学家们策略旨在开发新方法,以使用2-氯-4-4H-4-氧代吡啶并[1,2-a]嘧啶(1)作为建筑物,合成一些可能具有生物活性的杂环化合物块。一些杂环化合物合成的新方法,例如吡啶嘧啶吡啶嗪衍生物3,吡唑吡啶[1,2-A]嘧啶衍生物4,四唑[1.5-A] [1,8]萘啶衍生物9,吡唑吡啶衍生物[1,2- a]从2-氯-4H-4-氧代 - 吡啶开始的嘧啶衍生物10a,10b,12,吡咯哒嗪[1,2-a]嘧啶衍生物14a,14b,14c,14d和16a,16b [1,2 -A]描述嘧啶(1)。手性膦哌啶合成

上海毕得医药科技有限公司成立于2007年,总部位于上海市杨浦区理工大学国家大学科技园,是一家以医药中间体相关产品的研发、生产、销售及合成定制为主的****。自公司成立以来,始终坚持信誉至上,质量过硬的企业信条,产品被应用于生命科学、有机化学、材料科学、分析化学与其他学科的研发及生产领域,销售范围遍及全球。目前,公司与诸多国内**医药研发单位建立了合作伙伴关系。

公司位于上海理工大学科技园的行政办公中心面积达1,700平米,在药谷设立的研发中心面积1,800平米,包括化学合成实验室和公斤级实验室,并配有现代化仓储物流中心。公司优势产品包括特色杂环化合物、含氟化合物、手性化合物、氨基酸及其衍生物、硼酸及其衍生物等,已有多项科研项目获得国家发明专利。

为确保产品质量,公司引进了先进齐全的分析测试设备,包括400MHz核磁共振仪(NMR)、电感耦合等离子体发射光谱仪(ICP)、液质联用仪(LCMS)等,并配以严格的质量管理体系。公司签有具备GMP资质的合作工厂,配备专业的研发团队,形成了从小试、中试到工业化规模的生产能力,满足客户定制合成、目录试剂采购及合成外包生产的需求。

信息来源于互联网 本站不为信息真实性负责